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1. Introduction

1 Classical Harmonic Analysis concerns a decomposition of a function (signal) into a
superposition of components corresponding to simple harmonics. The analysis of the
signal aims at finding these components and the synthesis is the reconstruction of the
signal out of them. There is often some “signal processing”, dictated by applications,
between the analysis and synthesis.

The simple harmonics behave well under various symmetries and this is the reason
for the decomposition. The fundamental results are Parseval’s Theorem (1806) for the
Fourier series, [Par06], and Plancherel’s Theorem (1910) for the Fourier transform, [Pla10].
Among the best known applications is the Magnetic Resonance Imaging, for which Peter
Mansfield and Paul Lauterbur were awarded a Nobel prize in 2003.

If the function is defined on a commutative group, such as the additive group of the real
numbers or the multiplicative group of the complex numbers of absolute value one, then
the simple harmonics are the eigenvectors under the translations. This is the ultimate
symmetry one could expect.

Problems arising in Physics and Number Theory motivated a rapid growth of Harmonic
Analysis on non-commutative groups. The earliest examples were the Heisenberg group,
necessary for a formulation of the principles of Quantum Mechanics (J. Von Neumann
1926, [vN26]), and the compact Lie groups (Peter-Weyl 1927, [PW27]). Here the simple
harmonics are replaced by irreducible unitary representations. All of them may be found by
analyzing the square integrable functions on these groups, so that an analog of Plancherel’s
Theorem may be viewed as the top achievement of the theory.

However, there are plenty of other groups of interest which have irreducible unitary
representations occurring outside the space of the square integrable functions on the
group. The main class are the non-compact semisimple Lie groups, such as SL2(R).
Though the irreducible unitary representations of most of them are not understood yet,
the representations that can be found in the space of the square integrable functions on
the group are known and the decomposition of an arbitrary such function in terms of these
representations is known as the Plancherel formula. For the group SLn(C) this formula
was first found by Gelfand and Naimark in 1950, and for SLn(R) by Gelfand and Graev
in 1953, [GG53]. The Plancherel formula on an arbitrary Real Reductive Group was
published by Harish-Chandra in 1976, [Har76], and is considered as one of the greatest
achievements of Mathematics of the 20th century.

A goal of these lectures is to explain the ingredients of Harish-Chandra’s Plancherel
formula, explain how they fit together, study particular cases and go through all the
details for the group of the real unimodular matrices of size two.

All the necessary information in its original nearly perfect form is contained in Harish-
Chadra’s articles [HC14a], [HC14b], [HC14c], , [HC14d], [HC18]. The example SL2(R)
is explained in classical books such as [Lan75]. For all of that, a good understanding of
the Fourier Transform and Distribution theory on an Euclidean space is needed. Here

1This version was corrected/improved with the help of Muna Naik. I would like to thank him for a
careful reading.



PLANCHEREL FORMULA FOR A REAL REDUCTIVE LIE GROUP 3

Hörmender’s “The Analysis of Linear Partial Differential Operators I” is one of the best
references, [Hör83].

2. The Fourier Transform on the Schwartz space S(R)

Here we follow [Hör83, section 7.1]. Recall that the Schwartz space S(R) consists of all
infinitely many times differentiable functions f : R → C such that for any two integers
n, k ≥ 0

sup
x∈R
|xn∂kxf(x)| <∞ .

In particular S(R) ⊆ L1(R) and we have the well defined

Theorem 1. The Fourier transform

f̂(y) = Ff(y) =

∫
R
e−2πixyf(x) dx (y ∈ R, f ∈ S(R)) (1)

maps the Schwartz space S(R) into itself, is invertible, and the inverse is given by

f(x) =

∫
R
e2πixyFf(y) dx (x ∈ R, f ∈ S(R)) . (2)

Since
d

dy
Ff(y) =

∫
R
e−2πixy(−2πix)f(x) dx (3)

and ∫
R
e−2πixyf ′(x) dx = 2πiyFf(y) , (4)

the inclusion FS(R) ⊆ S(R) is easy to check. For the rest we need a few lemmas.

Lemma 2. Let f ∈ S(R) be such that f(0) = 0. Set g(x) =
∫ 1

0
f ′(tx) dt. Show that

f(x) = xg(x) and g ∈ S(R).

Proof. The equality f(x) = xg(x) is immediate from the Fundamental Theorem of Cal-
culus, via a change of variables y = tx.

Fix two non-negative integers n and k. Suppose |x| ≤ 1. Then∣∣xng(k)(x)
∣∣ =

∣∣∣∣xn ∫ 1

0

tkf (k+1)(tx) dt

∣∣∣∣ ≤ ∫ 1

0

|f (k+1)(tx)| dt ≤ max
y∈R
|f(y)| <∞.

Notice that

xng(k)(x) = xn
(
d

dx

)k
(x−1f(x))

= xn
k∑
p=0

k!

p!(k − p)!
(−1)(−2) . . . (−p)x−p−1f (k−p)(x)

and that
max
|x|≥1

∣∣xn−p−1f (k−p)(x)
∣∣ <∞.
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Hence

max
x∈R
|xng(k)(x)| <∞.

�

Corollary 3. Fix y ∈ R. Let φ ∈ S(R) be such that φ(y) = 0. Then that there is ψ ∈ S(R)
such that

φ(x) = (x− y)ψ(x).

Lemma 4. Let T : S(R) → S(R) be a linear map with the property that if φ(y) = 0 for
some y ∈ R then Tφ(y) = 0 for the same y. Then there is a function c(x) such that

Tφ(x) = c(x)φ(x) (φ ∈ S(R).

(In other words, T is the multiplication by the function c.)

Proof. Let φ1(x) = e−x
2
. As we know this function belongs to S(R). Fix x ∈ R. Then

for any φ2 ∈ S(R)

(φ2(x)φ1 − φ1(x)φ2) (x) = φ2(x)φ1(x)− φ1(x)φ2(x) = 0.

Hence, by the assumption on T ,

0 = T (φ2(x)φ1 − φ1(x)φ2) (x). (5)

Since T is linear

T (φ2(x)φ1) = φ2(x)T (φ1) and T (φ1(x)φ2) = φ1(x)T (φ2).

Thus evaluation at x and using (5) we see that

0 = φ2(x)T (φ1)(x)− φ1(x)T (φ2)(x).

Therefore

T (φ2)(x) =
T (φ1)(x)

φ1(x)
φ2(x).

Thus the claim holds with

c(x) =
T (φ1)(x)

φ1(x)
.

�

Lemma 5. Suppose T : S(R)→ S(R) is a linear map which commutes with the multipli-
cation by x:

T (xf(x)) = xT (f)(x) (f ∈ S(R)).

Then there is a function c(x) such that

Tφ(x) = c(x)φ(x) (φ ∈ S(R)).
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Proof. It’ll suffice to show that T satisfies the assumptions of Lemma 4. Fix y ∈ R. Let
φ ∈ S(R) be such that φ(y) = 0. Then, by Corollary 3 there is ψ ∈ S(R) such that

φ(x) = (x− y)ψ(x).

Hence
T (φ)(x) = T ((x− y)ψ(x)) = (x− y)T (φ)(x),

which is zero if x = y. �

Proposition 6. Suppose T : S(R) → S(R) is a linear map which commutes with the
multiplication by x:

T (xf(x)) = xT (f)(x) (f ∈ S(R))

and with the derivative
T (f ′) = T (f)′ (f ∈ S(R)).

Then there is a constant c such that

Tφ(x) = cφ(x) (φ ∈ S(R)).

Proof. We know from Lemma 5. that T coincides with the multiplication by a function
c(x). Since T commutes with the derivative we see that for any f ∈ S(R)

c(x)f ′(x) = (c(x)f(x))′.

Since the multiplication by c(x) prserves the Schwartz space, c(x) is differentiable and

(c(x)f(x))′ = c′(x)f(x) + c(x)f ′(x) .

Hence c′(x) = 0. therefore c(x) is a constant. �

Lemma 7. Let Rf(x) = f(−x). The map T = RF2 : S(R) → S(R) commutes with the
multiplication by x and with the derivative.

Proof. Since

R(xf(x)) = −xf(−x) = −xR(f)(x) and R(f ′) = −R(f) ,

it’ll suffice to check that

F2(xf(x)) = −xF2(f)(x) and F2(f ′) = −
(
F2(f)

)′
,

which follows from the relations (3) and (4). �

Lemma 8. Let f(x) = e−πx
2
. Then Ff = f . (Fourier transform of the normalized

Gaussian is the same Gaussian.)

Proof. Since
d

dx
f(x) = −2πxf(x)

the formulas (3) and (4) show that

d

dx
(Ff(x) · f(x)) = 0 .
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Hence

Ff(x) = constf(x) .

Evaluating at x = 0 gives ∫
R
f(y) dy = const .

By squaring the integral and using polar coordinates we show that const = 1. �

Now we are ready to prove the inversion formula in Theorem 1. We see from that the
map RF2 : S(R)→ S(R) is the identity,

RF2f = f (f ∈ S(R)).

We know from Lemma 7 and Proposition 6 that the map RF2 is a constant multiple of
the identity: cI = RF2. Now Lemma 8 shows that with f(x) = e−πx

2

cf = RF2f = Rf = f.

Thus c = 1. Hence

RF = F−1

and the formula2 follows. This completes the proof of Theorem 1.

3. Magnetic Resonance Imaging

Suppose a source at s ∈ R is emitting a signal with frequency ks ∈ R and amplitude
A(s). The collective signal received is

B(x) =

∫
R
A(s)e2πixks ds .

By Fourier inversion,

A(s) = k

∫
R
B(x)e−2πixks dx .

Hence we can recover A(s) from B(x). In particular, if we the function A(s) is linear (in
some large interval contained in [0,∞)) and if we know A(s) then we know s, i.e. the
location of the source. For the related physics see
youtube.com/watch?v = pGcZvSG805Y youtube.com/watch?v = djAxjtN 7V E.

4. The Fourier Transform on the space C∞(U1)

Here U1 = {u ∈ C; |u| = 1} is the group of the unitary matrices of size 1. We shall
use the following identification of groups

R/2πZ 3 θ + 2πZ→ eiθ ∈ U1 .

Here we follow [SS03, section 2.2]. Recall that a function f : Z → C is called rapidly
decreasing if

sup
n∈Z
|(1 + |n|)k|f(n)| <∞ (n ∈ Z) .
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Theorem 9. The Fourier transform

f̂(n) = Ff(n) =

∫ 1

0

e−2πixnf(x) dx (n ∈ Z, f ∈ C∞(U1)) (6)

maps the space C∞(U1) into the space of the rapidly decreasing functions on Z, is invert-
ible, and the inverse given by

f(x) =
∑
n∈Z

e2πixnFf(n) dx (x ∈ R, f ∈ C∞(U1)) . (7)

(Notice that the integral (6) converges as long as the function f is absolutely integrable.
Hence we have the Fourier Ff transform for any f ∈ L1(U1).) Since∫ 1

0

e−2πixnf ′(x) dx = 2πinFf(y) , (8)

the rapid decrease of Ff is easy to check. For the inversion formula we need the following
Lemma.

Lemma 10. If f : U1 → C is continuous and Ff = 0, then f = 0.

Proof. Since ∫ 1

0

e−2πixnf(x+ y) dx = e2πiyn

∫ 1

0

e−2πixnf(x) dx

it’ll suffice to show that f(0) = 0.
Suppose the claim is false. We may assume that f is real valued and that f(0) > 0.

We shall arrive at a contradiction. Choose 0 < δ ≤ π
2

so that

f(x) >
f(0)

2
(|x| < δ) .

Let ε > 0 be so small that the function

p(x) = ε+ cosx

satisfies
|p(x)| < 1− ε

2
(δ ≤ |x| ≤ π) .

Choose 0 < η < δ so that

|p(x)| ≥ 1 +
ε

2
(|x| ≤ η) .

Then for k = 0, 1, 2, ...,∣∣∣∣∫
δ≤|x|≤π

f(x)p(x)k dx

∣∣∣∣ ≤ 2π ‖ f ‖∞
(

1− ε

2

)k
,∫

η≤|x|<δ
f(x)p(x)k dx ≥ 0 ,∫

|x|<η
f(x)p(x)k dx ≥ 2η

f(0)

2

(
1 +

ε

2

)k
.
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Therefore

lim
k→∞

∫
|x|≤π

f(x)p(x)k dx = +∞ .

However p(x)k is a trigonometric polynomial (linear combination of powers of exponen-
tials). Hence the assumption Ff = 0 implies∫

|x|≤π
f(x)p(x)k dx = 0 .

�

5. Some Functional Analysis on a Hilbert space

Here we follow [Lan85, sections 1.2 and 1.3]. Let V be a Hilbert space. A continuous
linear map A : V→ V is called compact if it any bounded sequence vn ∈ V to a sequence
Avn that has a convergent subsequence.

Theorem 11. Let A be a compact hermitian operator on the Hilbert space V. Then
the family of eigenspaces Vλ, where λ ranges over all eigenvalues (including 0), is an
orthogonal decomposition of E:

V =
⊕
λ

Vλ .

For λ 6= 0 the eigenspace Vλ is finite dimensional.

Let S be a set of operators (continuous linear maps) on V. We say that V is S-irreducible
if V has no closed S-invariant subspace other than {0} and V itself. We say that V is
completely reducible for S if V is the orthogonal direct sum of S-irreducible subspaces.
Two subspaces V1,V2 ⊆ E are called S-isomorphic if there is an isometry from V1 onto
V2 which intertwines the action of S. The number of elements in such an isomorphism
class is called the multiplicity of that isomorphism class in V.

A subalgebra A of operators on V is said to be ∗-closed if whenever A ∈ A, then
A∗ ∈ A. As explained in [Lan85, section 1.2], the following Theorem is a consequence of
Theorem 11.

Theorem 12. Let A be a ∗-closed subalgebra of compact operators on a Hilbert space V.
Then V is completely reducible for A, and each irreducible subspace occurs with finite
multiplicity.

The following two theorems and the corollary below are known as Schur’s Lemma.

Theorem 13. Let S be a set of operators acting irreducibly on a finite dimensional vector
space V. Let A be an operator such that AB = BA for all B ∈ S. Then A = λI for some
complex number λ.

Proof. Let λ be an eigenvalue of A and W denotes the null space of A − λI. Since
AB = BA for all B ∈ S, it is easy to see that W is S-invariant. As S acts irreducibly on
V and W 6= 0, it follows that W = V . Hence A = λI. �
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Theorem 14. Let S be a set of operators acting irreducibly on the Hilbert space V. Let A
be a hermitian operator such that AB = BA for all B ∈ S. Then A = cI for some real
number c.

Proof. See [Lan85, Appendix 1, Theorem 4]. �

Corollary 15. Let S be a set of operators acting irreducibly on the Hilbert space V. Let
A be an operator such that AB = BA and A∗B = BA∗ for all B ∈ S. Then A = cI for
some c ∈ C.

Proof. We write A = B + iC, where

B =
1

2
(A+ A∗) , C =

1

2i
(A− A∗) .

Then B and C commute with S. Hence there are real numbers b and c such that B = bI
and C = cI. Hence A = (b+ ic)I. �

We shall also use a few facts concerning integral kernel operators. The proofs may be
found in [Lan85, section 1.3]

Theorem 16. Let (X,M, dx) and (Y,N, dy) be measured spaces, and assume that L2(X),
L2(Y ) have countable orthogonal bases. Let q ∈ L2(X × Y ). Then the the formula

Qf(x) =

∫
Y

q(x, y)f(y)dy

defines a bounded, compact operator from L2(Y ) into L2(X) with ‖ Q ‖≤‖ q ‖2. If
(X,M, dx) = (Y,N, dy) then Q is of trace class. If X is a topological space, dx is a Borel
measure and in addition q is continuous, then

trQ =

∫
X

q(x, x) dx .

6. Representations of locally compact groups

Let G be a locally compact group and let V be a topological vector space. We shall
always assume that V 6= {0}. Let GL(V) denote the group of the invertible continuous
endomorphisms of V. A representation of G on V is a pair (π,V), where π : G→ GL(V)
is a group homomorpism such that the map

G× V 3 (g, v)→ π(g)v ∈ V

is continuous. A subspace W ⊆ V is called invariant if ρ(G)W ⊆ W. The representation
(ρ,V) is called irreducible if V does not contain any closed invariant subspaces other than
{0} an V.

If (π1,V1), (π2,V2) are representations of G, then a continuous linear map TV1 → V2

such that

Tπ1(g) = π2(g)T (g ∈ G)
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is called an intertwining operator, or a G-homomorphism. The vector space of all the in-
tertwining maps will be denoted HomG(V1,V2) or more precisely, HomG((π1,V1), (π2,V2)).
The representations (π1,V1), (π2,V2) are equivalent if there exists a bijective T ∈ HomG(V1,V2).

A basic example of a representation of G is the right regular representation (R,C(G).
Here C(G) is the space of the continuous, complex valued, functions on G (with the
topology of uniform convergence on compact sets) and

R(g)f(x) = f(xg) (g, x ∈ G, f ∈ C(G)) .

Similarly, we have the left regular representation (L,C(G)),

L(g)f(x) = f(g−1x) (g, x ∈ G, f ∈ C(G)) .

Given an irreducible representation (π,V) and an element λ ∈ V′ (a continuous linear
functional on V) the forula

Tv(x) = λ(π(x)v) (x ∈ G)

defines an injective map T ∈ HomG((π,V), (R,C(G))). Thus every abstract representa-
tion of G may be viewed as a subrepresentation of the right regular representation on the
continuous functions on G. The function

G 3 x→ λ(π(x)v) ∈ C
is called a matrix coefficient of the representation (π,V).

If V is a Hilbert space, then a representation (π,V) is called unitary if every operator
π(g), g ∈ G, is unitary. Two unitary representations (π1,V1), (π2,V2) are called unitarili
equivalen if there is a bjiective and isometric G-homomorphism T : V1 → V2.

Here is the classical version of Schur’s Lemma, which is an immediate consequence of
Corollary 15.

Theorem 17. Let (π,V) be an irreducible unitary representation of G. Then

HomG(V,V) = CI .

Corollary 18. For two irreducible unitary representations (ρ,V) and (ρ′,V′) of G,

dim HomG(V,V′) =

{
1 if (ρ,V) ' (ρ′,V′)
0 if (ρ,V) 6' (ρ′,V′)

(Here ' stands for unitary equivalence.)

Proposition 19. If two unitary representations (π,V), (π′,V′) are equivalent then they
are unitarily equivalent.

Proof. Let ( , ) be the invariant scalar product on V and let ( , )′ be the invariant scallar
product on V′. Pick an isomorphism T : V→ V′. Define T ∗ : V′ → V by

(Tu, v)′ = (u, T ∗v) (u ∈ V, v ∈ V).

Then T ∗V′ → V is also a morphism. Hence, T ∗T : V → V commutes with the action of
G. Hence, there is λ ∈ C such that T ∗T = λI. Thus, for any u, v ∈ V,

(Tu, Tv)′ = (u, T ∗Tv) = λ(u, v).
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In particular, by taking u = v 6= 0 we see that λ > 0. Hence,

1√
λ
T : V→ V′

is an isometry and a morphism. �

Here is one more version of Schur’s Lemma. For a proof see [Wal88a, 1.2.2].

Theorem 20. Let (π,V) be an irreducible unitary representation of G. Let V0 ⊆ V be a
dense G-invariant subspace and let A : V0 → V be a linear G-intertwining map.

Suppose V1 ⊆ V is a dense subspace and let B : V1 → V a linear map such that

(Av0, v1) = (v0, Bv1) (v0 ∈ V0, v1 ∈ V1) .

Then A is a scalar multiple of the identity on V, restricted to V0.

7. Haar measures and extension of a representation of G to a representation
of L1(G)

A proof of the following theorem may be found in [HR63, (15.5)-(15.11)]

Theorem 21. There is a positive Borel measure dx on G such that∫
G

f(gx) dx =

∫
G

f(x) dx (g ∈ G, f ∈ Cc(G)) .

This measure is unique up to a constant multiple. Furthermore there is a group homom-
rphism ∆ : G→ R+ such that∫

G

f(xg) dx = ∆(g)

∫
G

f(x) dx (g ∈ G, f ∈ Cc(G)) .

The measure dx is called the left invariant Haar measure on G. The group G is called
unimodular if ∆ = 1. This is certainly the case if G is compact. The Lebesgue measures
we used in sections 2 and 4 are Haar measures and the groups are unimodular. An
example of a non-unimodular group is

P =

{
p =

(
a b
0 a−1

)
a ∈ R×, b ∈ R

}
.

Here |a|−2da db is the left invariant Haar measure and ∆(p) = a2.
The convolution φ ∗ ψ of two functions φ, ψ ∈ L1(G) is defined by

φ ∗ ψ(y) =

∫
G

φ(x)ψ(x−1y) dx .

The Banach space L1(G) with the product defined by the convolution is a Banach algebra.
This algebras may have no identity, but they always has an approximate identity.
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Theorem 22. There is a sequence φn ∈ Cc(G) such that

(1) φn ≥ 0 (n = 0, 1, 2, ...) ,

(2)

∫
G

φn(x) dx = 1 (n = 0, 1, 2, ...) ,

(3) Given a neighborhood U of the identity in G ,

the support of φn is contained in U for all n sufficiently large.

(See [Lan85, secion 1.1] for a proof.) Given a representation (π,V) the formula

π(φ) =

∫
G

φ(x)π(x) (φ ∈ L1(G))

defines a representation of the Banach algebra L1(G) on V, i.e.

π(φ ∗ ψ) = π(φ)π(ψ) (φ, ψ ∈ L1(G)) .

By restriction, (π,V) is also a representation of the convolution algebra Cc(G). As
straightforward consequence of Theorem 22 we see that a subspace W ⊆ V is G-invariant
if and only if it is Cc(G)-invariant. Also, (π,V) is G-irreducible if and only if it is Cc(G)-
irreducible.

8. Representations of a compact group

Let G be a compact group with the Haar measure of total mass equal to 1. If (π,V) is
a representation of G on a Hilbert space V, then, by averaging the norm on V over G, we
obtain another norm with respect to which the representation is unitary.

Hence, while considering representations of G on Hilbert spaces, we may assume that
they are unitary.

Theorem 23. Any irreducible unitary representation (π,V) of G is finite dimensional.

Proof. Let v ∈ V be a unit vector and let P be the orthogonal projection on the one-
dimensional space Cv. Let Q be the continuous linear map defined by

Q =

∫
G

π(x)−1Pπ(x) dx .

Then Q = Q∗ commutes with the action of G. Hence Schur’s Lemma, Theorem 16, implies
that there is a constant c ∈ R such that Q = cI. Since π is unitary,

(Qv, v) =

∫
G

(Pπ(x)v, π(x)v) dx =

∫
G

(π(x)v, v)(v, π(x)v) dx =

∫
G

|(π(x)v, v)|2 dx > 0 .

Hence c > 0.
Let v1, v2, ... be an orthonormal basis of V. Then for each x ∈ G, π(x)v1, π(x)v2, ...is

also an orthonormal basis of V. Hence
∞∑
n=1

(Pπ(x)vn, π(x)vn) =
∞∑
n=1

((π(x)vn, v)v, π(x)vn) =
∞∑
n=1

|(π(x)vn, v)|2 =‖ v ‖= 1 .
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But (Pπ(x)vn, π(x)vn) = (π(x)−1Pπ(x)vn, vn). Hence, after integration over G we see
that

∞∑
n=1

(Qvn, vn) = 1 .

Thus c times the number of the elements in the basis is equal to 1. Hence, dimV <∞. �

By combining Theorem 23 with the Spectral Theorem from Linear Algebra we deduce
the following corollary.

Corollary 24. An irreducible unitary representation of a compact abelian group is one
dimensional.

If dimV < ∞, we let Vc denote the vector space dual to V. The contragredient repre-
sentation (πc,Vc) is defined by

πc(g)vc(v) = vc(π(g−1)v) (v ∈ V, vc ∈ Vc, g ∈ G).

Given two finite dimensional representations (π,V) and (π′,V′) define their direct sum
(π ⊕ π′,V ⊕ V′) by

(π ⊕ π′)(g)(v, v′) = (π(g)(v), π′(g)(v′)) (g ∈ G, v ∈ V, v′ ∈ V′)

and the tensor product (π ⊗ π′,V ⊗ V′) by

(π ⊗ π′)(g)[v ⊗ v′] = [π(g)(v)]⊗ [π′(g)(v′)] (g ∈ G, v ∈ V, v′ ∈ V′).

By definition the character ΘV = Θπ of a finite dimensional representation (π,V) is the
following complex valued function on the group:

ΘV(g) = tr(π(g)) (g ∈ G).

This function is invariant under conjugation

Θ(hgh−1) = Θ(g) (h, g ∈ G).

Also, we have
ΘV⊕V′ = ΘV + ΘV′ , ΘV⊗V′ = ΘVΘV′ and Θπc = Θπ. (9)

Denote by L2(G)G ⊆ L2(G) the subspace of the functions invariant by the conjugation by
all the elements of G. Our characters live in L2(G)G.

Lemma 25. Suppose (π,V) is a non-trivial irreducible unitary representation of G. Then∫
G

π(x)v dx = 0 (v ∈ V).

Proof. Notice that the integral defines a G-invariant vector u ∈ V. Since π is irreducible,
either u = 0 or V = Cu. Since π is non-trivial, the second option is impossible. �

Corollary 26. Suppose (π,V) is a non-trivial irreducible unitary representation of G. Then∫
G

π(x) dx = 0 .
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Corollary 27. Suppose (π,V) is a finite dimensional representation of G. Then∫
G

Θπ(x) dx = dimVG,

where VG ⊆ V is the space of the G-invariant vectors.

Proposition 28. The characters of irreducible representations form an orthonormal set
in L2(G)G.

Proof. Consider two such representations (π,V) and (π′,V′). The group G acts on this
vector space HomG(V,V′) by

gT (v) = π′(g)Tπ(g−1)v (g ∈ G, T ∈ HomG(V,V′), v ∈ V).

This way HomG(V,V′) becomes a representation of G. It is easy to check that as such it
is isomorphic to (πc ⊗ π′,Vc ⊗ V′). Hence, by (9),

ΘHom(V,V′)(g) = Θπ(g)Θπ′(g) (g ∈ G).

Therefore,

(Θ′π,Θπ) =

∫
G

ΘHom(V,V′)(g) dg

= dimension of the space of the G-invariants in HomG(V,V′).

Thus the formula follows from Corollary 18. �

Proposition 29. Any finite dimensional representation of G decomposes into the direct
sum of irreducible representations.

Proof. This follows from the fact that the orthogonal complement of a G-invariant sub-
space is G-invariant. �

Let (π,V) be a finite dimensional representation of G and let

V = V1 ⊕ V2 ⊕ ...⊕ Vn

be the decomposition into irreducibles. The number of the Vj which are isomorphic to
V1 is called the multiplicity of V1 in V, denoted m1. We may collect the isomorphic
representations in the above formula and (after changing the indecies appropriately) get
the following decomposition

V = V⊕m1
1 ⊕ V⊕m2

2 ⊕ ...⊕ V⊕mkk ,

where the Vj are irreducible and mutually non-isomorphic and

V
⊕mj
j = Vj ⊕ Vj ⊕ ...⊕ Vj (mj summands).

This is the primary decomposition of V, which is also denoted by

V = m1V1 ⊕m2V2 ⊕ ...⊕mkVk = m1 · V1 ⊕m2 · V2 ⊕ ...⊕mk · Vk,
for brevity.
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Proposition 30. Let

V = m1V1 ⊕m2V2 ⊕ ...⊕mkVk,

be the primary decomposition of V. Then

ΘV = m1ΘV1 +m2ΘV2 + ..mkΘVk

and

mj = (ΘV,ΘVj).

In particular V is irreducible if and only if (ΘV,ΘV) = 1.

Proof. This follows from (9) and from Lemma 28. �

Given a finite dimensional representation (π,V) define a map

Mπ : End(V)→ L2(G), Mπ(T )(g) = tr(π(g)T ) = tr(Tπ(g)).

In particular, if I ∈ End(V) is the identity, then

Mπ(I) = Θπ.

Also, it is easy to see that the subspace Mπ(End(V)) ⊆ L2(G) depends only on the
equivalence class of π.

Theorem 31. Suppose (π,V) and (π′,V′) are two irreducible unitary representations of
G. Then

a) if (π,V) is not equivalent to (π′,V′), then Mπ(End(V)) ⊥Mπ′(End(V′)),
b) for any S, T ∈ End(V), (Mπ(S),Mπ(T )) = 1

dimV
tr(ST ∗).

Proof. Define a representation (Π,End(V)) of the group G×G on the vetor space End(V)
by

Π(g1, g2)T = π(g2)Tπ(g−1
1 ) (g1, g2 ∈ G, T ∈ End(V)).

Notice that (Π,End(V)) is isomorphic to outer tensor product (πc ⊗ π,Vc ⊗ V). Hence,∫
G×G

|ΘΠ(x1, x2)|2 dx1 dx2 =

∫
G×G

|Θπ(x1)Θπ(x2)|2 dx1 dx2

=

∫
G

|Θπ(x1)|2 dx1

∫
G

|Θπ(x2)|2 dx2 = 1.

Hence, by Proposition 30, (Π,End(V)) is irreducible.
We view End(V) as a Hilbert space with the following scalar product

(S1, S2) = tr(S1S
∗
2) (S1, S2 ∈ End(V)),

and similarly for V′. In particular, we have the adjoint map

M∗
π′ : L2(G)→ End(V).

Notice also that

M∗
π′Mπ : End(V)→ End(V′)
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is a G×G-intertwining map. If the two representations (π,V) and (π′,V′) are not isomor-
phic then The G×G-modules End(V) and End(V′) are not isomorphic. Hence Corollary
18 shows that M∗

π′Mπ = 0. Thus for S ∈ End(V) and T ∈ End(V′),

(Mπ(S),Mπ′(T )) = (S,M∗
π′Mπ(T )) = 0

and a) follows.
Similarly, there is λ ∈ C such that M∗

πMπ = λI. Furtheremore,

λ · dimV = (I,M∗
πMπ(I)) = (Mπ(I),Mπ(I)) = (Θπ,Θπ) = 1

and b) follows. �

Theorem 32. There are the following direct sum orthogonal decompositions of Hilbert
spaces

a) L2(G) =
∑

π∈Ĝ Mπ(End(V)),
b) L2(G)G =

∑
π∈Ĝ CΘπ.

Proof. Part b) follows from part a), because, by Theorem 17, End(V)G = CI. Indeed,

L2(G)G =
∑
π∈Ĝ

(Mπ(End(V)))G =
∑
π∈Ĝ

Mπ(End(V)G),=
∑
π∈Ĝ

CΘπ.

where only the middle equation

(Mπ(End(V)))G = Mπ(End(V)G)

requires an explanation. We need to show that if

tr(Tπ(ghg−1)) = tr(Tπ(h))

for all h ∈ G, then π(g−1)Tπ(g) = T . Since tr(Tπ(ghg−1) = tr(π(g−1)Tπ(g)π(h)), we’ll
be done as soon as we show that if tr(Sπ(h)) = 0 for all h ∈ G, then S = 0. But, since
the map Mπ is injective (because π is irreducible), this is indeed the case.

Part a) requires some work. We follow the argument in [Kna86, Theorem 1.12]. Let
U =

∑
π∈Ĝ Mπ(End(V)). This is a subspace of L2(G) closed under the left and right trans-

lations and under the ∗ operation, φ → φ∗, φ∗(x) = φ(x−1). Hence so is the orthogonal
complement U⊥ ⊆ L2(G).

Suppose U⊥ 6= {0}. We shall arrive at a contradiction. Let φ ∈ U⊥ be non-zero.
Let φn ∈ Cc(G) be an approximate identity, as in Theorem 22. Then a straightforward
argument shows that

lim
n→∞

‖ φn ∗ φ− φ ‖2= 0 .

Hence there is n such that φn ∗ φ 6= 0. But this function is continuous. Thus we may
assume that φ is continuous. Furthermore, applying the translations and the ∗ operation
we may assume that φ = φ∗ and φ(1) > 0. Replacing φ by the integral∫

G

L(x)R(x)φ dx
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we may assume that φ is invariant under conjugation. Let

Tψ(x) =

∫
G

φ(x−1y)ψ(y) dy .

Since the integral kernel φ(x−1y) is continuous on G × G, T is a compact operator on
L2(G). Furthermore, T = T ∗ 6= 0. Hence, by Theorem 11, T has a non-zero finite
dimensional eigenspace Vλ ⊆ L2(G). Since T commutes with L(G), Vλ is closed under
L(G). Hence Theorem 29 shows that there is a G-irreducible subspace Wλ ⊆ Vλ. Let fj
be an orthonarmal basis of Wλ. Set

hi,j(x) = (L(x)fi, fj) =

∫
G

fi(x
−1y)f(j(y) dy .

This is a matrix coefficient of an irreducible representation of G, thus it belongs to U.
Therefore,

0 = (φ, hi,i) =

∫
G

∫
G

φ(x−1y)fi(y) dy dx = λ

∫
G

fi(x)fi(y) dx ,

which is a contradiction. �

Theorem 33. Any unitary representation (ρ,W) of G is completely reducible, i.e. the
Hilbert space W is the orthogonal sum of irreducible finite dimensional representations of
G.

The converse is not true, i.e. there are locally compact but not compact groups for
which the right regular representation decomposes into a direct sum of irreducible, see
[Bag72] or [Knu17]. They are called “Fell groups”.

Proof. We follow [Kna86, Theorem 1.12]. Suppose (ρ,W) is not completely reducible. By
Zorn’s Lemma we may choose a maximal orthogonal set of finite dimensional irreducible
invariant subspaces. Let U denote the closure of their sum. Suppose 0 6= v ∈ U⊥. We’ll
arrive at a contradiction.

Let φn ∈ Cc(G) be an approximate identity, as in Theorem 22. Then, as we have seen
before, there is n such that ρ(φn)v 6= 0. We fix this n.

Theorem 32 a) implies that there is a finite set F ⊆ Ĝ and φ ∈
⊕

π∈F Mπ(End(V)),
such that

‖ φn − φ ‖2≤
1

2 ‖ v ‖
‖ ρ(φn)v ‖ .

Since the total mass of G is 1, we have

‖ φn − φ ‖1≤‖ φn − φ ‖2 .

Hence

‖ ρ(φn)v − ρ(φ)v ‖≤‖ φn − φ ‖1‖ v ‖≤
1

2
‖ ρ(φn)v ‖ .

Therefore

‖ ρ(φ)v ‖≥‖ ρ(φn)v ‖ − ‖ ρ(φn)v − ρ(φ)v ‖≥ 1

2
‖ ρ(φn)v ‖> 0 .
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This is a contradiction because ρ(φ)v lies in a finite dimensional invariant subspace of
W. �

For a function φ ∈ L1(G) define the Fourier transform

Fφ(π) =

∫
G

φ(x)π(x) dx =

∫
G

φ(x)π(x) dx = π(φ) . (10)

Notice that in order to be consistent with the theory of Fourier series, section 4, we should
replace π by πc in this definition. However we shall follow the tradition and not do that.

Thus for a representation (π,V), Fφ(π) ∈ End(V). Notice that

π(g)Fφ(π) = F(L(g)φ) (g ∈ G) . (11)

Set d(π) = dimV) = Θπ(1). This is the degree of the representation (π,V).

Theorem 34. (Fourier inversion for G) For any φ ∈
⊕

π∈Ĝ Mπ(End(V)) (algebraic sum),

φ(g) =
∑
π∈Ĝ

d(π) · tr(Fφ(π)π(g−1)) (g ∈ G) , (12)

or equivalently

φ(1) =
∑
π∈Ĝ

d(π) ·Θπ(φ) (g ∈ G) , (13)

Notice that in the case of the classical Fourier series, section 4, the above formula (12)
refers only to trigonometric polynomials, φ.

Proof. Clearly (13) is a particular case of (12). Also, (12) follows from (13) and (11).
Let us write (π,Vπ) for (π,V) in order to indicate the dependence of the vector space

on π. By definition, there is a finite set F ⊆ Ĝ and operators Tπ ∈ End(Vπ) such that

φ(g) =
∑
ρ∈F

tr(Tρρ(g)) (g ∈ G) .

Hence

Fφ(π) =
∑
ρ∈F

∫
G

tr(Tρρ(g))π(g) dg .

Therefore, by Theorem 31

trFφ(π) =
∑
ρ∈F

∫
G

tr(Tρρ(g)) trπ(g) dg =

∫
G

tr(Tππ(g)) trπ(g) dg

= (Tππ(g)), π(g)) =
1

dπ
tr(Tππ(g)π(g)∗) =

1

dπ
tr(Tπ) .

Hence ∑
π∈Ĝ

d(π) ·Θπ(φ) =
∑
π∈Ĝ

d(π) · trFφ(π) =
∑
π∈Ĝ

tr(Tπ) = φ(1).

�
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Theorem 35. (Parseval formula) For any φ ∈
⊕

π∈Ĝ Mπ(End(V)),

‖ φ ‖2
2=
∑
π∈Ĝ

dπ ‖ Fφ(π) ‖2 .

Proof. That the left hand side is equal to

φ ∗ φ∗(1) =
∑
π∈Ĝ

dπc tr(Fφ(π)Fφ(π)∗),

which coincides with the right hand side. �

9. Square integrable representations of a locally compact group

In this section G is a locally compact unimodular group. We follow [Wal88a, section
1.3].

Lemma 36. Let (τ,V) be an irreducible unitary representation of G. Suppose that for
some non-zero vectors u0, v0 ∈ V∫

G

|(τ(x)u0, v0)|2 dx <∞ . (14)

Then for arbitrary u, v ∈ V, ∫
G

|(τ(x)u, v)|2 dx <∞ . (15)

Moreover, the map T : V→ L2(G) defined by

Tu(x) = (τ(x)u, v0) (u ∈ V, x ∈ G)

is G-intertwining and has the property that there is t > 0 such that

(Tu, Tv) = t(u, v) (u, v ∈ V) . (16)

Proof. Let W0 be the linear span of all the vectors π(g)u0, g ∈ G. This is a G-invariant
subspace of V. Since V is irreducible, W0 is dense in V. Let

W = {u ∈ V;

∫
G

|(τ(x)u, v0)|2 dx <∞} .

Then W is also a G-invariant subspace of V and W contains W0. Hence W is dense in V.
Clearly

Tτ(g)u = R(g)Tu (g ∈ G) .

Define an inner product on W by

〈w1, w2〉 = (w1, w2) + (Tw1, Tw2) (w1, w2 ∈ W) .

One checks that W with this inner product is complete. (Every Cauchy sequence in W
has a limit in W.) Thus (τ,W), with this new inner product, is a unitary representation
of G.

The inclusion
IW : W 3 w → w ∈ V
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is a bounded linear map which intertwines the actions of G. The adjoint

I∗W : V→ W

is also a bounded linear map which intertwines the actions of G. Now we apply Theorem
20 with A = I∗W, V0 = V, B = IW and V1 = W. The conclusion is that I∗W is a scalar
multiple of the identity. Hence W = V. This means that (14) holds for the fixed v0 ∈ V0

and arbitrary u ∈ V in place of the u0. Now we fix arbitrary u ∈ V and, since the group is
unimodular, we may apply the same argument to see that (14) holds with the u0 replaced
by u and v0 replaced by an arbitrary v ∈ V. This verifies (15).

Now V is equipped with two inner products (·, ·) and 〈·, ·〉 preserved by G. Define a
map S : V→ V by

〈u, v〉 = (Su, v) .

Then S commutes with the action of G. Hence S = sI for some s ∈ C. Explicitly,

(u, v) + (Tu, Tv) = s(u, v) .

Since T 6= 0, by taking u = v, we see that s = 1 + t with t > 0. This implies (16). �

An irreducible unitary representation of G is called square integrable if one, or equiva-
lently all, its matrix coefficients are square integrable.

Remark 1. The assumption that the group G is unimodular is essential. Lemma 36 fails
for example for G = “ax+ b” group. Recall, [Fol95, page 188 and 242], that G = R+ ×R
with the multiplication

(a, b)(a′, b′) = (aa′, b+ ab′)

and the left invariant Haar measure

a−2da db .

The following formula defines an irreducible unitary representation of G on L2(0,∞),

π(a, b)u(s) = a
1
2 e2πibsu(as) (a ∈ R+ , b ∈ R , s ∈ (0,∞) , u ∈ L2(0,∞)) ,

see [Fol95, page 242]. Hence for two functions u, v ∈ L2(0,∞) the corresponding matrix
coefficient has the L2 norm squared equal to∫

|(π(a, b)u, v)|2a−2da db =

∫ ∣∣∣∣∫ a
1
2 e2πibsu(as)v(s) ds

∣∣∣∣2 a−2da db

=

∫ (∣∣∣∣∫ e2πibsu(as)v(s) ds

∣∣∣∣2 db
)
a−1da =

∫ (∫
|u(as)v(s)|2 ds

)
a−1da

=

∫ ∫
|u(as)v(s)|2 a−1da ds =

∫
|u(a)|2 a−1da

∫
|v(s)|2 ds .

This expression is finite if and only if∫
|u(a)|2 a−1da <∞ ,
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which is the case if u ∈ Cc(0,∞) but is not the case if u is the indicator function of the
interval (0, 1).

Proposition 37. Let (σ,U) and (τ,V) be irreducible unitary square integrable representa-
tions of G. Then∫

G

(σ(x)u1, u2)(τ(x)v1, v2) dx = 0, (u1, u2 ∈ U , v1, v2 ∈ V) if σ 6' τ. (17)

There is a positive number d(τ) such that∫
G

(τ(x)u1, u2)(τ(x)v1, v2) dx =
1

d(τ)
(u1, v1)(v2, u2), (u1, u2, v1, v2 ∈ V) . (18)

Proof. For u ∈ U, v ∈ V, we define a sesquilinear form Su,v : U× V→ C given by

Su,v(u1, v1) :=

∫
G

(σ(x)u1, u)(τ(x)v1, v) dx, u1 ∈ U, v1 ∈ V.

Then (16) shows that there is a positive constant Cu,v such that

|Su,v(u1, v1)| ≤
(∫

G

|(σ(x)u1, u)|2 dx
)1/2(∫

G

|(τ(x)v1, v)|2 dx
)1/2

≤ Cu,v ‖ u1 ‖‖ v1 ‖ .

Hence there is a bounded linear map A : V→ U such that

Su,v(u1, v1) = (u1, Av1), (u1 ∈ U, v1 ∈ V) .

It is also easy to see that A is G-intertwining. A is zero if the representations σ and τ are
not equivalent. Hence (17) follows.

Suppose σ = τ . In this case A = λu,vI for some scalar λu,v ∈ C. Hence we get

Su,v(u1, v1) = λ̄u,v(u1, v1). (19)

Since G is unimodular, we have

Su,v(u1, v1) =

∫
G

(τ(x)u1, u)(τ(x)v1, v) dx

=

∫
G

(τ(x−1)u1, u)(τ(x−1)v1, v) dx

=

∫
G

(u1, τ(x)u)(v1, τ(x)v) dx

=

∫
G

(τ(x)v, v1)(τ(x)u, u1) dx

= Sv1,u1(v, u).

Owing to (19) we get

λ̄u,v(u1, v1) = λ̄v1,u1(u, v).

Let w be a fixed vector of norm one. By choosing u1 = v1 = w, we get

λ̄u,v = λ(u, v),
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where λ = λ̄w,w. Thus from (19) we get∫
G

(τ(x)u1, u)(τ(x)v1, v) dx = λ(u1, v1)(u, v).

By taking u1 = v1 = u = v 6= 0, we see that λ > 0. �

The constant d(τ) is called the formal degree of τ . It depends on the choice of the Haar
measure on G. If G is compact with the Haar measure of total mass 1 then, as we have
seen in Theorem 31, d(τ) = dimV. Hence the name.

10. G = SL2(R)

10.1. The maximal compact subgroup K = SO2(R).
We let

k(θ) =

(
cos θ sin θ
− sin θ cos θ

)
and define

K = SO2(R) = {k(θ); θ ∈ R} .
This is a maximal compact subgroup of G, which is unique up to conjugation. The group
K is commutative. Define the characters

χn(k(θ)) = einθ (θ ∈ R, n ∈ Z) .

For two integers n and m define

Sn,m = {f ∈ Cc(G); f(k(θ1)gk(θ2) = e−inθ1f(g)e−imθ2} .
Since k(π) = −I, we see that Sn,m is zero unless m and n have the same parity. In order
to see that Sn,m is not zero if n and m have the same parity we need to recall Cartan
decomposition of G, [Lan85, page 139]. Let

A+ =

{
a =

(
a 0
0 a−1

)
, a > 1

}
.

The Spectral Theorem for symmetric matrices of size two implies that the map

K× A+ ×K 3 (k1, a, k2)→ k1ak2 ∈ G,

is a smooth double covering of a dense open subset of G. Two elements (k1, a, k2) and
(k′1, a

′, k′2) are in the same fiber if and only if (k1, a, k2) = (k′1, a
′, k′2) or (k1, a, k2) =

(−k′1, a′,−k′2). If f ∈ Cc(A+) is a non-zero function and m and n have the same parity
then the formula

f̃(k(θ1), a, k(θ2)) = e−inθ1f(a)e−imθ2 ,

defines a non-zero continuous function on the product, which is constant on the fibers of
covering map. Hence this function descends to a non-zero element of Sn,m.

Lemma 38. The algebraic sum
⊕

n,m Sn,m is L1-dense in Cc(G). In fact, given ε > 0 and

f ∈ Cc(G), there exists a function g ∈
⊕

n,m Sn,m such that the support of g is contained

in K(supp f)K, and such that ‖ f − g ‖∞< ε.
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Proof. This follows from the properties of the Fourier series. See [Lan85, page 20]. �

Lemma 39. The following formulas hold.

Sn,m ∗ Sl,q = {0} if m 6= l ,

S∗n,m = Sm,n ,

Sn,m ∗ Sm,q ⊆ Sn,q .

Proof. This is straightforward [Lan85, page 22]. �

Lemma 40. Let S = {x ∈ G; x = xt}. Then the map

K× S 3 (k, s)→ ks ∈ G

is a bijective diffeomrophism.

Proof. This is well known from Linear Algebra. See straightforward [Lan85, page 22]. �

Lemma 41. The algebra S0,0 is commutative.

Proof. The argument is due to I. M. Gelfand. Consider an element x ∈ G. Then there is
k ∈ K and s ∈ S such that x = ks. Hence the transpose

xt = ktst = k−1s = k−1xk−1 . (20)

Also, the group G is unimodular. Hence the Haar measure is invariant under the change
of variables x→ xt. Let f, g ∈ S0,0. Set f t(x) = f(xt). It is easy to check that

(f ∗ g)t = gt ∗ f t .
Notice that f t = f . Indeed,

f t(x) = f(xt) = f(k−1xk−1) = f(x) ,

because elements of S0,0 are K-bi-invariant. Hence

gt ∗ f t = g ∗ f .
By Lemma 39, f ∗ g ∈ S0,0. Hence (f ∗ g)t = f ∗ g. The conclusion follows. �

Lemma 42. For any n ∈ Z, the algebra Sn,n is commutative.

Proof. The argument is due to S. Lang, see [Lan85, pages 21-23]. Let

γ =

(
1 0
0 −1

)
.

Clearly γ = γ−1. Notice that γxγ ∈ SL2(R) whenever x ∈ SL2(R). In fact the map

SL2(R) 3 x→ γxγ ∈ SL2(R)

is an involutive group automorphism. In particular it preserves the Haar measure. Fur-
thermore,

γkγ = k−1, (k ∈ K).

Let s = st ∈ G. Then there is k ∈ K such that ksk−1 = d is diagonal. Therefore

γsγ = γk−1dkγ = γk−1γγdγγkγ = kdγk−1 = k2sk−2.
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Thus there is ks ∈ K such that
γsγ = k−1

s sks,

where ks = k−2. Recall that f t(x) = f(xt) and let fγ(x) = f(γxγ). Then, for f ∈ Sn,n
fγ(x) = f t(x)

Indeed, write x = ks. Then

fγ(ks) = f(γksγ) = f(k−1γsγ) = χn(k)f(γsγ)

= χn(k)f(k−1
s sks) = χn(k)χn(ks)f(s)χn(ks)

−1

= χn(k)f(s) = f(s)χn(k) = f(sk−1) = f((ks)t)

= f t(ks) .

Therefore for any f, g ∈ Sn,n,

fγ ∗ gγ = f t ∗ gt = (g ∗ f)t = (g ∗ f)γ = gγ ∗ fγ

and we are done. �

For a representation (π,V) of G on a Banach space V define

Vn = {v ∈ V; π(k(θ))v = einθv, θ ∈ R} .
Then Vn is called the n-th isotypic component of V. Clearly Vn is a closed subspace of V .

We define an operator Pn : V → V by

Pnv :=
1

2π

∫ π

−π
e−inθπ(kθ)v dθ, (v ∈ V ).

Since the representation π is locally bounded (i.e. given a compact subset K of G, the set
π(K) is bounded in GL(V) (see [Lan85, page 2]), it follows that Pn is a bounded operator
from V to V . It can be also easily checked that Pn is a continuous projection from V onto
Vn. For v ∈ V , Pnv is called the n-component of v.

Lemma 43. Let (π,V) be a representation of G on a Banach space V. Then

π(Sn,m)V ⊆ Vn

and for q 6= m,
π(Sn,m)Vq = 0 .

Proof. See [Lan85, page 23]. �

Lemma 44. Let (π,V) be an irreducible representation of G on a Banach space V. Then
for any q such that Vq 6= 0, the space Vq is Sq,q-irreducible. Also, π(Sq,q)Vq 6= 0.

Proof. This follows from the fact that the ∗ algebra⊕
n,m

Sn,m (21)

is L1-dense in Cc(G) (see [Lan85, page 24]). We recall the argument for reader’s conve-
nience.
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Let 0 6= W ⊆ Vq be a closed Sq,q-invariant subspace. Lemma 43 implies that for any
w ∈ W and any f in the algebra (21) the q-component of π(f)w is in W . Since the
algebra (21) is L1-dense in Cc(G) we see that the q-component of π(f)w is in W for any
f ∈ Cc(G). Since the representation (π,V) of G is irreducible, π(Cc(G))W is dense in V.
(This follows from Theorem 22.) In particular the q-component of π(Cc(G))W is dense
in Vq. Therefore, W is dense in Vq. Hence W = Vq. �

Theorem 45. Let (π,V) be an irreducible representation of G on a Banach space V. Fix
an integer n. If dimVn <∞ then dimVn = 1 or 0.

Proof. Let Vn 6= 0. We know from Lemma 44 that the commutative algebra π(Sn,n) acts
irreducibly on Vn. Hence if f ∈ Sn,n, owing to Theorem 13 it follows that, π(f) = λfI for
some λf ∈ C. Now it is clear that dimVn = 1. �

Warning: there exists a Banach space V of infinite dimension and a linear operator
T ∈ End(V) acting irreducibly on V, see [Enf87].

Definition 46. A representation (π,V) of G on a Banach space V is admissible if dimVn <
∞ for every integer n.

Theorem 47. Let (π,V) be an irreducible unitary representation of G on a Hilbert space
V. Fix an integer n. Then dimVn = 1 or 0.

Proof. In this case π(Sn,n) is a commutative ∗ algebra. Hence the claim follows from
Corollary 14. �

Theorem 48. Let (π,V) be an irreducible representation of G on a Banach space V. Then
the space of finite sums ⊕

n∈Z

Vn ⊆ V

is dense.
If (π,V) be an irreducible representation of G on a Hilbert space space V such that π is

unitary on K, then

V =
∑
n∈Z

Vn

is a Hilbert space direct sum orthogonal decomposition.

Proof. This follows from the fact that the ∗ algebra⊕
n,m

Sn,m

is dense in Cc(G) see [Lan85, page 25]. �
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10.2. Induced representations. Recall the following subgroups of G:

K =

{(
cos θ sin θ
− sin θ cos θ

)
; θ ∈ R

}
, A =

{(
a 0
0 a−1

)
; a > 0

}
, N =

{(
1 n
0 1

)
;n ∈ R

}
.

The following map is a bijective diffeomorphism

A× N×K 3 (a, n, k)→ ank ∈ G,

giving the Iwasawa decomposition G = ANK. Let us fix Haar measures on these groups

d

(
cos θ sin θ
− sin θ cos θ

)
=

1

2π
dθ , d

(
a 0
0 a−1

)
=
d+a

a
, d

(
1 n
0 1

)
= dn .

where d+a is the Lebesgue measure on A when we view A as an open subset of R. Then
in terms of the Iwasawa decomposition, the formula

dx = da dn dk (x = ank, a ∈ A, n ∈ N, k ∈ K),

defines a Haar measure on G. Let

α

(
a 0
0 a−1

)
:= a2 , ρ

(
a 0
0 a−1

)
:= a .

Let P = AN. This is a subgroup of G with the modular function

∆

((
a 0
0 a−1

)(
1 n
0 1

))
= a2 .

Theorem 49. Let (σ,V) be a representation of P on a Hilbert space V. Denote by V(σ)
the space of functions f : G→ V such that

f(px) = ∆(p)
1
2σ(p)f(x) (x ∈ G)

whose restriction to K is square integrable:∫
K

‖ f(k) ‖2 dk <∞ .

Set
π(g)f(x) = f(xg) (g, x ∈ G)

Then (π,V(σ)) is a representation of G. Moreover, π is bounded if σ is bounded and is
unitary if σ is unitary.

Proof. See [Lan85, Theorem 2, page 44]. �

Our main example is going to be the case when V = C and for some fixed complex
number s,

σ(an) = ρ(a)s (a ∈ A, n ∈ N) .

Then we shall write V(s) = V(σ) and πs = π. Then the transformation property of
functions in V(s) looks as follows

f(anx) = ρ(a)1+sf(x) (a ∈ A, n ∈ N, x ∈ G) . (22)

The resulting representation(πs,V(s)) is called the principal series representation.
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Lemma 50. Let
ρs(ank) = ρ(a)1+s (a ∈ A, n ∈ N, k ∈ K) .

Then ρs ∈ V(s) is K-ivariant and

(πs(x)ρs, ρs) =

∫
K

ρs(kx) dk =

∫
K

ρ0(kx)1+s dk .

Proof. See [Lan85, page 47]. �

The function

φs =

∫
K

ρ0(kx)1+s dk (23)

is known as a spherical function.

Lemma 51. For a function ψ ∈ Cc(G), πs(ψ) is an integral kernel operator with the
integral kernel

qψ(k, k′) =

∫
N

∫
A

ψ(k′−1ank)ρ(a)1+s da dn .

Furtheremore the operator πs(ψ) is of trace class and

trπs(ψ) =

∫
K

qψ(k, k) dk =

∫
K

∫
N

∫
A

ψ(k−1ank) ρ(a)1+s da dn dk.

Proof. The formula for the integral kernel is obtained via a straightforward computation
in [Lan85, page 48]. It is a continuous function. Hence of the trace class. �

By computing a few Jacobians, as in [Lan85, page 68], we obtain the following lemma.

Lemma 52. Let φ ∈ Cc(G) and a ∈ A be such that α(a) 6= 1. Then we have,∫
N

φ(ana−1n−1) dn =
1

|α(a)− 1|

∫
N

φ(n) dn. (24)

Moreover the function x 7→ φ(x−1ax) has compact support on A\G and we have∫
A\G

φ(x−1ax) d
.
x =

ρ(a)

|D(a)|

∫
N

∫
K

φ(kank−1) dk dn , (25)

where d
.
x is the unique G-invarint measure on A\G (see [Lan85, Theorem 1, page 37])

and
D(a) = ρ(a)− ρ(a)−1. (26)

Theorem 53. Let Θπs be a function on G defined as follows.

Θπs(x) =

{
2
[
ρ(a)s+ρ(a)−s

|D(a)|

]
if x is conjugate to a ∈ A ,

0 if x is not conjugate to any element of A .
(27)

Then

trπs(ψ) =

∫
G

Θπs(x)ψ(x) dx (ψ ∈ Cc(G)) . (28)
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Proof. By combining Lemmas 51 and 52 we see that

trπs(ψ) =

∫
A

|D(a)|
∫

A\G
ψ(x−1ax) d

.
x ρ(a)s da . (29)

Changing the variable a to a−1 gives

trπs(ψ) =

∫
A

|D(a−1)|
∫

A\G
ψ(x−1a−1x) d

.
x ρ(a)−s da .

However |D(a−1)| = |D(a)| and∫
A\G

ψ(x−1a−1x) d
.
x =

∫
A\G

ψ(x−1ax) d
.
x .

Therefore

trπs(ψ) =
1

2

∫
A

|D(a)|
∫

A\G
ψ(x−1ax) d

.
x (ρ(a)s + ρ(a)−s) da

=

∫
A+

|D(a)|
∫

A\G
ψ(x−1ax) d

.
x (ρ(a)s + ρ(a)−s) da .

On the other hand,∫
G

Θπs(x)ψ(x) dx =
1

4

∫
A

|D(a)|2
∫

A\G
Θπs(x

−1ax)ψ(x−1ax) d
.
x da

=
1

4

∫
A

|D(a)|
∫

A\G
ψ(x−1ax) d

.
xΘπs(a)|D(a)| da

=
1

2

∫
A+

|D(a)|
∫

A\G
ψ(x−1ax) d

.
xΘπs(a)|D(a)| da .

Since for any test function φ ∈ Cc(A
+) we can find ψ ∈ Cc(G) such that the orbital

integral of ψ is equal to φ, (27) follows. �

Notice that the trace is given via integration against a G-invariant locally integrable
function. Let 0M = {1,−1} ⊆ G. This is the centralizer A in K. If δ is a character of the
group 0M, we define V(δ, s) ⊆ V(s) to be the subspace of functions φ such that

φ(mx) = δ(m)ψ(x) (m ∈ 0M, x ∈ G) .

Denote by (πδ,s,V(δ, s)) the resulting representation of G. Clearly (πs,V(s)) is the direct
sum of the two subrepresentations (πδ,s,V(δ, s)).

Theorem 54. Let Θπδ,s be a function on G defined as follows.

Θπs(mx) =

{
δ(m)ρ(a)s+ρ(a)−s

D(a)
if x is conjugate to ma, where m ∈ 0M and a ∈ A ,

0 if x is not conjugate to any element of ±A .

(30)
Then

tr πδ,s(ψ) =

∫
G

Θπδ,s(x)ψ(x) dx (ψ ∈ Cc(G)) . (31)
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10.3. Finite dimensional representations. Define

D(k(θ)) = eiθ − e−iθ (k(θ) ∈ K) . (32)

Lemma 55. Fix an integer n ≥ 1. For non-negative integers p,q with p + q = n − 1 let
fp,q be a function of

x =

(
a b
c d

)
such that fp,q(x) = cpdq. Then fp,q ∈ V(δ,−n), where δ(−1) = (−1)p+q. The functions
fp,q span a G-invariant finite dimensional subspace

U(δ,−n) =
⊕

p+q=n−1

Cfp,q ⊆ V(δ,−n)

of dimension n. Denote the resulting representation by (σδ,−n,U(δ,−n)). Then

trσδ,−n(ma) = δ(m)
ρ(a)n − ρ(a)−n

D(a)
(m ∈ 0M,a ∈ A) . (33)

Also,

trσδ,−n(k(θ)) =
einθ − e−inθ

D(k(θ))
(k(θ) ∈ K) . (34)

Proof. Everything till (33) is straightforward. See [Lan85, page 151]. The formula (33) is
verified in [Lan85, Lemma 2, page 151].

Let GC = SL2(C). Then G ⊆ GC is a subgroup and the representation (σδ,−n,U(δ,−n))
extends to a representation of GC so that σδ,−n : GC → GL(U(δ,−n)) is a polynomial
map. Notice that

1√
2

(
1 −i
1 i

)(
cos θ sin θ
− sin θ cosθ

)
1√
2

(
1 1
i −i

)
=

(
eiθ 0
0 e−iθ

)
Thus k(θ) is conjugate to (

eiθ 0
0 e−iθ

)
(35)

within GC. In particular the trace evaluated on k(θ) is equal to the trace evaluated on
the element (35). This last trace is computed in [Lan85, Lemma 3, 152]. Thus (34)
follows. �

10.4. Smooth vectors and analytic vectors. Let (π,V) be a representation of G on
a Banach space V. Denote by V∞ ⊆ V the subspace of all vectors v such that the map

G 3 x→ π(x)v ∈ V (36)

is smooth (infinitely many times differentiable). This subspace is dense because, as is
easy to check, π(C∞c (G))V ⊆ V∞. For X ∈ g = sl2(R), the Lie algebra of G, define

dπ(X)v =
d

dt
π(exp(tX))v|t=0 (v ∈ V∞) . (37)
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One checks without difficulties that the map

dπ : g→ End(V∞) (38)

is a Lie algebra homomorphism. By linearity we extend it to the complexification gC =
g + ig = sl2(C)

dπ : gC → End(V∞) (39)

and obtain a representation (dπ,V∞) of the Lie algebra gC. One drawback of this rep-
resentation is that the closure of a g-invariant subspace U ⊆ V∞ in V does not need to
be G-invariant. Indeed, consider the right regular representation (R,L2(G)) of G. Let
W ⊆ G, W 6= G, be a non-empty open set. Then the space U = C∞c (W ) is closed under
the action of dR(g), but the closure L2(W ) is not R(G) invariant. For this reason one is
lead to study the space Van ⊆ V of all vectors v such that the map.

G 3 x→ π(x)v ∈ V (40)

is analytic.

Theorem 56. Let X ⊆ Van be a g-invariant vector subspace. Then the closure of X in V
is G-invarant

Proof. We follow [Var89, Theorem 2, page 108]. It is enough to prove that for any v ∈ U
and for any x ∈ G, π(x)u belonges to the closure of U. Suppose not. Then by Haan-
Banach Theorem there is λ in the dual of V such that λ is equal to zero on the closure of
U, but for some x0 ∈ G, λ(π(x0)v) 6= 0.

By assumption the function

G 3 x→ λ(π(x)v) ∈ C

is analytic. By the choice of λ, its Taylor series at x = 1 is zero. Indeed, for any
X1, X2, ..., Xn ∈ g,

dπ(X1)dπ(X2)...dπ(Xn)v ∈ U.

Hence

λ(dπ(X1)dπ(X2)...dπ(Xn)v) = 0

Also, λ(v) = 0. Thus the function is zero because G is connected. This is a contradiction.
�

10.5. The derivative of the right regular representation. Every element g ∈ GL+
2 (R)

has a unique decomposition as

g =

(
a b
c d

)
=

(
u 0
0 u

)(
y x
0 1

)(
cos θ sin θ
− sin θ cos θ

)
, (41)

where u > 0, y > 0, x ∈ R and θ ∈ [−π, π). We extend any function defined on SL2(R)
to a function on GL+

2 (R) by making it independent of the variable u. Also, we extend the
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right regular representation of SL2(R) to act on such defined functions on GL+
2 (R). Then

a straightforward computation, see [Lan85, 113-116] verifies the following formulas,

dR

(
0 1
0 0

)
= y cos 2θ ∂x + y sin 2θ ∂y + sin2 θ ∂θ , (42)

dR

(
0 1
−1 0

)
= ∂θ ,

dR

(
0 1
1 0

)
= 2y cos 2θ ∂x + 2y sin 2θ ∂y − cos 2θ ∂θ ,

dR

(
0 0
1 0

)
= y cos 2θ ∂x + y sin 2θ ∂y − cos2 θ ∂θ ,

dR

(
1 0
0 −1

)
= −2y sin 2θ ∂x + 2y cos 2θ ∂y + sin 2θ ∂θ .

10.6. The universal enveloping algebra. Here g = sl2(R) and G = SL2(R). The
universal enveloping algebra U(g) is the complex tensor algebra of g divided by the ideal
generated by element AB−BA− [A,B], A,B ∈ g. The Poincare-Birkhoff-Witt Theorem
says that if A, B, C form a basis of the vector space gC, then the elements

AaBbCc (0 ≤ a, b, c ∈ Z)

form a basis of the vector space U(g). (Here A0 = B0 = C0 = 1.) Furthermore, for any
A,B,C ∈ gC satisfying the commutation relations

[A,B] = 2B , [A,C] = −2C , [B,C] = A,

the element C = A2 + 2(BC + CB), called the Casimir element, generates the the center
of U(g) and does not depend on the choice of the A, B, C. For instance one can take

A =

(
1 0
0 −1

)
, B =

(
0 1
0 0

)
, C =

(
0 0
1 0

)
.

Thus the center of U(g) is equal to C[C]. Also, any representation of the Lie algebra
g extends to a representation of the algebra U(g). In terms of the coordinates used in
section 10.5,

dR(C) = 4y2(∂2
x + ∂2

y)− 4y∂x∂θ (43)

Proofs may be found in [Lan85, pages 191-198].

10.7. K-multiplicity 1 representations. Here G = SL2(R) and we consider only rep-
resentations (π,V) of G on Banach spaces V such that for each integer n the isotypic
component Vn ⊆ V has dimension at most 1.

Lemma 57. For any n ∈ Z, the space S∞n,n = Sn,n∩C∞(G) is dense in Sn,n in the topology
of uniform convergence.

Proof. See [Lan85, page 101 and proof of Lemma 1, page 19] . �
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Let V be a complex vector space and a g module. Denote the action of g by ρ:

Xv = ρ(X)v (X ∈ g, v ∈ V ) .

Suppose that V is also a K module. Denote the action of K by σ:

kv = σ(k)v (k ∈ K, v ∈ V ) .

The representation (σ, V ) is called locally finite if the linear span of σ(K)v is finite di-
mensional for every v ∈ V .

The space V is called a (g,K) module if it is a locally finite K module and the actions
of g and K satisfy the following compatibility conditions.
(1) If F is a finite dimensional K stable subspace of V then the representation of K on F
is differentiable with dσ|k = ρ|k and
(2) ρ(k)σ(X)v = σ(Ad(k)X)ρ(k)v (k ∈ K, X ∈ g, v ∈ V ).
It is known that if (π,V) is an admissible representation of G = SL2(R) on a Banach
space V, then VK :=

⊕
n∈Z Vn is a (g,K) module. Let (π, V ) and (σ, U) be two admissible

Banach space representations of G. We shall say that they are infinitesimally isomorphic
or infinitesimally equivalent if there exists a linear isomorphism T : VK → UK such that

Tdπ(X) = dσ(X)T on VK .

Theorem 58. Let (π,V) be a representation of G on a Banach space V such that for each
integer n the isotypic component Vn ⊆ V has dimension at most 1. Then VK ⊆ Van.

Proof. It’ll suffice to show that for a fixed n and a non-zero vector v ∈ Vn the function

fv(g) = π(g)v (g ∈ G)

is analytic. Notice that
fv(k(θ)g) = einθfv(g) .

Hence (43) shows that

dR(C)fv(g) = (4y2(∂2
x + ∂2

y)− 4y∂xin)fv(g) .

Since, by assumption, dimVn = 1, we see from Lemmas 57, 43 and 44 that

Vn = π(S∞n,n)Vn .

In particular, Vn ⊆ V∞. On the other hand dπ(C) commutes with π(K), hence preserves
Vn. Since, by assumption, dimVn = 1, dπ(C) acts on Vn via multiplication by a scalar,
call it cn. Thus

dπ(C)v = cnv .

Since
R(h)fv(g) = fπ(h)v(g) ,

this implies
dR(C)fv = cnfv .

Since the characteristic variety of the system of differential equations

(4y2(∂2
x + ∂2

y)− 4y∂xin)fv = cnfv , ∂θfv = infv,
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is zero the function fv is analytic. �

Theorem 59. Let (π,V) be a representation G on a Banach space V such that for each
integer n the isotypic component Vn ⊆ V has dimension at most 1. Then the map

V ⊇ U→ UK ⊆ VK

is a bijection between closed G-invariant subspaces of V and (g,K)-submodules of VK. The
inverse is given by

VK ⊇ X→ Cl(X) ⊆ V .

where Cl(X) denotes the closure of X in V. In particular (π,V) is irreducible if and only
if the (g,K)-module VK is irreducible.

Proof. This is clear from Theorems 56 and 58. �

Lemma 60. For any irreducible (g,K)-module X and any integer n such that Xn 6= 0, any
non-zero vector v ∈ Xn is cyclic for the action of U(g) on X.

Proof. Since U(g)v is a submodule of X, the claim is obvious. �

Let X =
⊕

n Xn ba a (g,K)-module with dimXn ≤ 1. A hermitian form (·, ·) on X is
called g-invariant if

(Xu, v) = −(u,Xv) (u, v ∈ X, X ∈ g) . (44)

A (g,K) module is called unitarizable if it admits an invariant positive definite hemitian
form.

Theorem 61. Let X =
⊕

n Xn ba an irreducible (g,K)-module with dimXn ≤ 1. Then any
two positive definite g-invariant hermitian products on X are positive multiples of each
other (assuming they exist).

Proof. Denote the two g-invariant positive hermitian products on X by (·, ·) and 〈·, ·〉.
Then the spaces Vn are mutually orthogonal with respect to (·, ·) and 〈·, ·〉. Let Pn :
V → Vn denote the orthogonal projection. Fix m ∈ Z such that Vm 6= 0 and a vector
0 6= vm ∈ Vm. Lemma 60 implies that for any n there is a ∈ U(g) such that Pnavm 6= 0.
Then

(avm, avm) = (vm, a
∗avm) = (vm, Pma

∗avm) = c〈vm, Pma∗avm〉 = c〈avm, avm〉 ,

where

c =
(vm, vm)

〈vm, vm〉
.

�

Theorem 62. Two irreducible unitary representations of G, of K-multiplicity at most 1,
are unitarily isomorphic if and only if their (g,K)modules are isomorphic.
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Proof. Let (π,V), (σ,U) be the two representations. If they are isomorphic, then clearly
so are the (g,K)-modules. Conversely, suppose

L : VK → UK

is a g-intertwinig map. Then (·, ·)V and the pull-back of (·, ·)U via L are positive definite
g-invariant hermitian products on VK. Theorem 61 shows that there is a constant c > 0
such that

(v, v′)V = c(Lv, Lv′)U (v, v′ ∈ V) .

Hence
T =

√
cL : VK → UK

is a g-intertwining isometry. We need to check that T is also G-intertwining.
Since K-finite vectors are analytic, we have

π(exp(X))v =
∞∑
n=0

1

n!
(dπ(X))n v (v ∈ VK) .

For X ∈ g in some small neighborhood of zero. Hence, in this neighborhood,

Tπ(exp(X))v =
∞∑
n=0

1

n!
(dσ(X))n Tv = σ(exp(X))Tv .

Thus there is an open neighborhood U of 1 ∈ G such that

Tπ(g)v = σ(g)Tv (g ∈ U) .

Since G is connected U generates G, so the proof is complete. �

10.8. The character of a (g,K)-module.

Theorem 63. Let (π,V) be a representation of G on a Hilbert space V, with dimVn ≤ 1
for all n ∈ Z. Then for any φ ∈ C∞c (G), the operator π(φ) is of trace class and the map

C∞c (G) 3 φ→ trπ(φ) ∈ C
is a distribution on G.

Proof. Recall that∫
G

φ(g)π(g) dg =

∫
G

φ(g)π(gk−1k) dg =

∫
G

R(k)φ(g)π(g) dg π(k) .

Hence by taking derivatives at k = 1,

0 =

∫
G

dR(J)φ(g)π(g) dg +

∫
G

φ(g)π(g) dg dπ(J) .

Let vn ∈ Vn be a unit vector. Then

0 =

∫
G

dR(J)φ(g)π(g) dg vn +

∫
G

φ(g)π(g) dg in vn .

By iterating we see that for m = 0, 1, 2, ...

(−in)mπ(φ)vn = π(dR(J)mφ) .
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Thus
|(π(φ)vn, vn)| ≤ (1 + |n|)−m ‖ π(dR(J)mφ) ‖ (n ∈ Z) .

Since for m ≥ 2, ∑
n∈Z

(1 + |n|)−m <∞ ,

the claim follows. �

Theorem 64. Let (π,V), (σ,U) be representations of G on Hilbert spaces V and U, with
dimVn ≤ 1 and dim Un ≤ 1 for all n ∈ Z. Assume that the (g,K)-modules VK and UK

are isomorphic. Then,

trπ(φ) = tr σ(φ) (φ ∈ C∞c (G)) .

Proof. Let vn ∈ Vn and un ∈ Un be unit vectors. Then they form orthonormal basis. Let

T : VK → UK

be a (g,K)-intertwining isomorphism. Then there are no-zero numbers tn ∈ C such that

Tvn = tnun for all n. Therefore T−1un = t−1
n vn. Set (T−1)∗vn = t

−1
n un and extend it to

whole of UK by linearity . Then the map (T−1)∗ : VK → UK satisfies

(T−1u, v)V = (u, (T−1)∗v)U (u ∈ UK, v ∈ VK) .

Since vn and un are analytic vectors we have for X ∈ g close enough to zero,

(π(exp(X))vn, vn)V = (
∞∑
k=0

1

k!
dπ(X)kvn, vn)V =

∞∑
k=0

1

k!
(dπ(X)kvn, vn)V

=
∞∑
k=0

1

k!
(dπ(X)kT−1Tvn, vn)V =

∞∑
k=0

1

k!
(T−1dσ(X)kTvn, vn)V

=
∞∑
k=0

1

k!
(dσ(X)kTvn, (T

−1)∗vn)U =
∞∑
k=0

1

k!
(dσ(X)ktnun, t

−1
n un)U

=
∞∑
k=0

1

k!
(dσ(X)kun, un)U = (

∞∑
k=0

1

k!
dσ(X)kun, un)U = (σ(exp(X))un, un)U .

Thus
(π(g)vn, vn)V = (σ(g)un, un)U

in a neighborhood of the identity of G. Since both functions are analytic and G is
connected, they are equal everywhere. Hence

(π(φ)vn, vn)V = (σ(φ)un, un)U (φ ∈ Cc(G)) .

Therefore
trπ(φ) =

∑
n

(π(φ)vn, vn)V =
∑
n

(σ(φ)un, un)U = trσ(φ)

and we are done. �



36 TOMASZ PRZEBINDA

Given a representation of G (with K-multiplicities at most 1) we define the character
of π as

Θπ(φ) = tr π(φ) (φ ∈ C∞c (G) .

This is a distribution on G which, as shown in Theorem 64, does not depend on the
infinitesimal equivalence class of (π,V). Therefore we shall also write Θπ = ΘVK

.

10.9. The unitary dual.

Lemma 65. Let

J =

(
0 1
−1 0

)
, E+ =

(
1 i
i −1

)
, E− =

(
1 −i
−i −1

)
.

Then
[E+, E−] = −4iJ , [J,E+] = 2iE+ , [J,E−] = −2iE− .

Proof. This is straightforward. See [Lan85, page 102]. �

Corollary 66. For any (g,K) module X, with the K-isotypic components Xn,

JXn ⊆ Xn , E+Xn ⊆ Xn+2 , E−Xn ⊆ Xn−2 .

Proof. This is clear from Lemma 65. �

Recall the principal series representation (πs,V(s)).

Lemma 67. In terms of (41), for n ∈ Z define

vn

((
u 0
0 u

)(
y x
0 1

)(
cos θ sin θ
− sin θ cos θ

))
= y

1+s
2 einθ .

Then vn ∈ V(s) and

dπs(J)vn = invn ,

dπs(E
−)vn = (s+ 1− n)vn−2 ,

dπs(E
+)vn = (s+ 1 + n)vn+2 .

Proof. We see from (42) that

dR(J)vn = invn ,

dR(E−)vn = (s+ 1− n)vn−2 ,

dR(E+)vn = (s+ 1 + n)vn+2 .

But the right regular action coincides with πs, hence the formulas follow. �

By combining Lemma 67 with Theorem 58 we deduce the following Corollary.

Corollary 68. The (g,K) module of the principal series (πs,V(s)) is equal to

V(s)K =
⊕
n∈Z

Cvn .

Lemma 67 implies the following Proposition, see [Lan85, pages 119-121].
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Proposition 69. If s is not an integer then

V(s)+
K =

⊕
n∈2Z

Cvn znd V(s)−K =
⊕

n∈2Z+1

Cvn

are irreducible submodules of V(s)K and V(s)K is the direct sum of them.
If s = 0, then V(0)K is the dirct sum of three irreducible submodules

V(0)K =
⊕
n∈2Z

Cvn ⊕
⊕

1≤n∈2Z+1

Cvn ⊕
⊕

−1≥n∈2Z+1

Cvn .

If m ≥ 2 is an integer and s = m − 1, then V(m − 1)K contains three irreducible
submodules

Xm =
⊕

m≤n, n−m∈2Z

Cvn , X−m =
⊕

−m≥n, n−m∈2Z

Cvn ,
⊕

n−m∈2Z+1

Cvn .

The quotient module, V(m − 1)K divided by the three submodules is irreducible, finite
dimensional of dimension m− 1. It has a basis represented by the elements

v−m+2 , v−m+4 , ... , vm−2 .

If m ≥ 2 is an integer and s = −m+1, then V(−m+1)K contains the finite dimensional
submodule

Cv−m+2 ⊕ Cv−m+4 ⊕ ...⊕ Cvm−2 .

The quotient module, V(m − 1)K divided by this module is isomorphic to the direct sum
of modules Xm and X−m plus the sum of all K-types of parity opposite to m.

Thus we have the highest weight modules, lowest weight modules, finite dimensional
modules and modules with unbounded K-types on both side.

The commutation relations Lemma 65 and the formulas Lemma 67 with some work
imply the following theorem, due to Bargmann, [Bar47]. See [Lan85, page 123].

Theorem 70. Here is a complete list of the irreducible (g,K) modules which are unitariz-
able, up to equivalence.

(1) Lowest weight module Xm with lowest weight m ≥ 1 and the highest weight module
Xm with highest weight m ≤ −1

(2) Principal series V(iτ)+
K and V(iτ)−K, τ ∈ R \ {0};

(3) Principal series V(0)+
K;

(4) Complementary series V(s)+
K, −1 < s < 1;

(5) Trivial module.

A similar result was obtained by Dan Barbasch, [Bar89] for the complex classical groups.
The closures of these modules in the corresponding principal series representation are

representations of G on Hilbert spaces. They are unitary representations except the
highest and lowest weight representations. In these cases the inner product inherited
from the principal series is not G-invariant. Therefore there is a problem of constructing
the unitary representations of G whose (g,K)-modules are the highest and lowest weight
modules. This is explained in the theorem below. See [Lan85, page 181].
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Theorem 71. Define

α̃

(
a b
c d

)
=

1

2
(a+ d− ic+ ib) , β̃

(
a b
c d

)
=

1

2
(c+ b− ia+ id) .

Let m ≥ 2. Then the closure V(m) in L2(G) of the space

∞⊕
r=0

Cα̃−m−rβ̃r

is invariant under the left action

L(g)φ(x) = φ(g−1x) .

The resulting representation (L,V(m)) of G is irreducible and unitary. Its (g,K)-module

V
(m)
K is isomorphis to the lowest weight module Xm with the lowest weight m. In order to

realize the lowest weight representations we take the complex conjugate of V(m).

We shall skip the construction of the unitary representations whose (g,K)-modules are
X1 and X−1. They are not square integrable. One may find them in [Kna86, page 36].

10.10. The character of the sum of discrete series. For an integer m ≥ 2 let ΘX(m)

denote the the character of the (g,K)-module X(m), and ΘX(−m) denote the the character
of the (g,K)-module X(−m). Let

ht =

(
et 0
0 e−t

)
, t ∈ R .

Proposition 72. The character of the sum of the two discrete series (g,K)-modules X(m)

and X(−m) is represented by the G-conjugation invariant function ΘX(m)⊕X(−m) given by

ΘX(m)⊕X(−m)(k(θ)) = −e
i(m−1)θ − e−i(m−1)θ

eiθ − e−iθ
(θ ∈ R) ,

ΘX(m)+X(−m)(zht) = zm
e−t|m−1|

|et − e−t|
(z = ±1, t ∈ R) .

Proof. From Proposition 69 we know the structure of the principal series V(m−1)K, from
Theorem 53, the character of it, from Lemma 55 the character of the finite dimensional
representation which is in the principal series. Now Theorem 64 justifies the formula

character of principal series

= character of the sum of discrete series + character of finite dimensional module .

This completes the proof �
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For convenience define the following G-conjugation invariant functions on G

ΘX(m)(k(θ)) = − ei(m−1)θ

eiθ − e−iθ
(θ ∈ R) ,

ΘX(m)(zht) = zm
e−|t||m−1|

|et − e−t|
(z = ±1, t ∈ R) .

and

ΘX(−m)(k(θ)) =
ei(m−1)θ

eiθ − e−iθ
(θ ∈ R) ,

ΘX(−m)(zht) = zm
e−|t||m−1|

|et − e−t|
(z = ±1, t ∈ R) .

These are the characters of the individual discrete series representations, but we don’t
need to know it to explain Harish-Chandra’s Plancharel formula in the SL2(R) case.

10.11. Harish-Chandra’s Plancherel formula. It is not difficult to check that K and
H = A ∪ (−A) are the only Cartan subgroups of G up to conjugacy. Let A′ = {a ∈
A; a 6= 1} and let K′ = {t ∈ K; t 6= ±1}. We begin by recalling Harish-Chandra’s orbital
integrals of a function φ ∈ C∞c (G), using the notation of [Lan85],

HA
φ (zht) = |D(ht)|

∫
A\G

φ(x−1zhtx) d
.
x (z = ±1, t ∈ R, t 6= 0) , (45)

HK
φ (k) = D(k)

∫
K\G

φ(x−1kx) d
.
x (k ∈ K′) ,

The Haar measure on G may be expressed in terms of these integrals by∫
G

φ(x) dx =

∫
K

HK
φ (k)D(k) dk +

1

4

∫
A′
HA
φ (a)|D(a)| da+

1

4

∫
A′
HA
φ (−a)|D(a)| da . (46)

Theorem 73. The function HA
φ extends to a smooth function on H. The function HK

φ is
smooth on H′ and its derivatives have one sided limits on the boundary. In these terms,

∂θH
K
φ (k(θ))|θ=0 = −iφ(1) . (47)

Proof. This is a problem concerning integrals on a 3 dimensional manifold, G = SL2(R).
Notice that we may replace φ by a K conjugation invarian function

∫
K
φ(kxk−1) dk. This

leads to analysis on the two dimesional manifold G/K. The computations are done in
[Lan85, page 164 -167]. �

Recall the character χn(k(θ)) = einθ.

Theorem 74. For any integer m ≥ 2 and φ ∈ C∞c (G)∫
G

ΘX(m)(x)φ(x) dx =

∫
K

HK
φ (k)χm−1(k) dk

+
1

2

∫
R
HA
φ (ht)e

−|t||m−1| dt+
1

2

∫
R
(−1)mHA

φ (−ht)e−|t||m−1| dt
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and∫
G

ΘX(−m)(x)φ(x) dx = −
∫

K

HK
φ (k)χ−m+1(k) dk

+
1

2

∫
R
HA
φ (ht)e

−|t||m−1| dt+
1

2

∫
R
(−1)mHA

φ (−ht)e−|t||m−1| dt .

Proof. This follows from (46) and the formulas for ΘX(±m) in previous section. �

Theorem 74 gives formulas for the Fourier coefficients of HK
φ :

ĤK
φ (n) =

∫
K

HK
φ (k)χn(k) dk (n 6= 0) .

Indeed, for n ≥ 1,

ĤK
φ (n) = ΘX(n+1)(φ)− 1

2

∫
R
HA
φ (ht)e

−|t|n dt− 1

2

∫
R
(−1)n+1HA

φ (−ht)e−|t|n dt

and

ĤK
φ (−n) = ΘX(−n−1)(φ)− 1

2

∫
R
HA
φ (ht)e

−|t||n| dt− 1

2

∫
R
(−1)n+1HA

φ (−ht)e−|t||n| dt

In particular,

ĤK
φ (n)− ĤK

φ (−n) = ΘX(n+1)+X(−n−1)(φ)

−
∫
R
HA
φ (ht)e

−|t|n dt−
∫
R
(−1)n+1HA

φ (−ht)e−|t|n dt . (48)

On the other hand, for k 6= ±1

HK
φ (k) =

∑
n∈Z

ĤK
φ (n)χ−n(k) =

∑
n∈Z

ĤK
φ (n)χn(k−1) =

∑
n∈Z

ĤK
φ (−n)χ−n(k−1)

and therefore

HK
φ (k)−HK

φ (k−1) =
∑

06=n∈Z

(HK
φ (n)−HK

φ (−n))χ−n(k) .

Thus,

HK
φ (k(θ))−HK

φ (k(−θ)) =
∞∑
n=1

(HK
φ (n)−HK

φ (−n))(−i) sin(nθ) . (49)

Continuing this way (and correcting the constants, if neccessary) one obtains the following
lemma, see [Lan85, page 174],
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Lemma 75.

π

i
(HK

φ (k(θ))−HK
φ (k(−θ))) = −

∞∑
n=1

ΘX(n+1)+X(−n−1)(φ) sin(nθ)

+
∞∑
n=1

∫
R

1

2

(
HA
φ (ht) + (−1)n+1HA

φ (−ht)
)

sin(nθ)e−|t|n dt . (50)

Let

φ+(x) =
φ(x) + φ(−x)

2
and φ−(x) =

φ(x)− φ(−x)

2
.

Then a straightforward argument shows that

∞∑
n=1

∫
R

1

2

(
HA
φ (ht) + (−1)n+1HA

φ (−ht)
)

sin(nθ)e−|t|n dt

=

∫
R
HA
φ+(ht)

sin(θ) cosh(t)

cosh(2t)− cos(2θ)
dt+

∫
R
HA
φ+(ht)

sin(2θ)

cosh(2t)− cos(2θ)
dt

For ψ ∈ C∞c (G) we have the Fourier transform

ĤA
ψ (λ) =

∫
R
HA
ψ (ht) e

itλ dt = Θπiλ(φ) , (51)

where the second equality follows from (29). One computes the Fourier transforms of the
functions

sin(θ) cosh(t)

cosh(2t)− cos(2θ)
and

sin(2θ)

cosh(2t)− cos(2θ)

to deduce from Lemma (75) and (51) the following theorem. See [Lan85, page 173]

Theorem 76.

π

i
(HK

φ (k(θ))−HK
φ (k(−θ))) = −

∞∑
n=1

ΘX(n+1)+X(−n−1)(φ) sin(nθ)

+
1

2

∫ ∞
0

Θπ+,iλ(φ)
cosh((π

2
− θ)λ)

cosh(πλ
2

)
dλ+

1

2

∫ ∞
0

Θπ−,iλ(φ)
sinh((π

2
− θ)λ)

sinh(πλ
2

)
dλ

Now we take the derivative with respect to θ of both sides, go to limit with θ → 0 and
apply (47) to deduce the Harish-Chandra’s Plancherel formula.

Theorem 77. For any φ ∈ C∞c (G),

2πφ(1) =
∞∑
n=1

nΘX(n+1)+X(−n−1)(φ)

+
1

2

∫ ∞
0

Θπ+,iλ(φ)λ tanh(
πλ

2
) dλ+

1

2

∫ ∞
0

Θπ−,iλ(φ)λ coth(
πλ

2
) dλ (52)

This Theorem was published by Harish-Chandra in 1952, [HC52]. Notice that knowing
the composition series of the principal series was crucial for this proof.



42 TOMASZ PRZEBINDA

11. Harish-Chandra’s Plancherel formula for a real reductive group

Here we follow [Wal88b, page 248].

Theorem 78. Let G be a real reductive group. Then for f ∈ C∞c (G)

f(1) =
∑

(P,A)�(P0,A0)

CA

∑
ω∈E2(0MP)

d(ω)

∫
a∗

ΘP,ω,iν(f)µ(ω, iν) dν , (53)

the summation is over standard parabolic subgroups P = 0MPAN containing a fixed min-
imal Parabolic subgroup P0 = 0MP0A0N0 including P = G, E2(0MP) is the set of the
equivalence classes of discrete series representations of 0MP, d(ω) is the formal degree of
ω, ΘP,ω,iν is the character of the induced representation with parameters ω and iν, which
is irreducible, and µ(ω, iν) is described in [Har76, section 36].

This theorem was proven by Harish-Chandra in 1976, [Har76]. One basic idea was
to replace C∞c (G) by a larger space C(G) where functions decay at infinity sort of like
matrix coefficients of discrete series and realize that the character of discrete series applies
to them. In fact Harish-Chandra showed, [Har66, Lemma 81, page 93] that if Cω(G) is
a space spanned by the matrix coefficients of a discrete series representation ω then for
φ ∈ Cω′(G)

d(ω)Θω(φ) =

{
φ(1) if ω′ ' ω∗ ,

0 otherwise .
(54)

12. A smooth compactly supported positive definite function whose integral
is negative

We refer to [Lan85, pages 62-65] for the definition and basic properties of psitive definite
functions on a group. By Bochner’s theorem, the integral of a positive definite L1 function
on the real line is positive. As we’ll see below, this not true for any non-compact semisiple
Lie group.

Let G be a real non-compact semisimple Lie group. Fix an Iwasawa decomposition
G = KAN and let W = W(G,A) denote the Weyl group acting on A and on the Lie
algebra a. This action extends to an action on the complexification aC by C-linearity and
dualizes to an action on a∗C. For g ∈ G define H(g) ∈ a by g ∈ K · exp(H(g)) · N. Let n
denote the Lie algebra of N and define ρ ∈ a∗ by

ρ(H) =
1

2
tr ad(H)n (H ∈ a) .

In these terms the Haar measure on G may be expressed as follows∫
G

f(g) dg =

∫
N

∫
A

∫
K

a2ρf(kan) dk da dn .

Recall the spherical functions, [GV88, page 104],

φλ(g) =

∫
K

e(λ−ρ)(H(gk)) dk (λ ∈ a∗C) .
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The spherical transform of a function f : G→ C is defined as

Hf(λ) =
1

|W|

∫
G

f(g)φλ(g) dg (λ ∈ a∗C)

whenever the integral is absolutely convergent, [GV88, page 106]. More explicitly, if the
function f is K-bi invariant then, [GV88, page 107],

Hf(λ) =

∫
A

aλ
[
aρ
∫

N

f(an) dn

]
da (λ ∈ a∗C)

and the result is W-invariant. Moreover, if A is a Cartan subgroup of G, then the
expression in the square brackets, usually called the Abel transform of f , denoted Af , is
the Harish-Chandra orbital integral of f evaluated at a, [Wal88a, page 249].

Let Cc(G//K) and C(G//K) denote the commutative convolution algebras of the K-bi
invariant and continuous compactly supported and Harish-Chandra Schwartz functions
on G, respectively. Recall that the convolution of two functions f1 and f2 is defined by

f1 ∗ f2(g) =

∫
G

f1(gh−1)f2(h) dh .

Notice by the way that the convolution of f with f ∗(g) = f(g−1) is equal to the diagonal
matrix coefficient of the left regular representation:

f ∗ f ∗(g) =

∫
G

f(gh−1)f(h−1) dh = (f, L(g)f)L2(G) .

Let PW(a∗C) be the Paley-Wiener space of all entire functions F : a∗C → C for which there
is a constant R > 0 such that

|F (λ)| ≤ CN(1 + |λ|)−NeR|Re(λ)| (λ ∈ a∗C, N = 0, 1, 2, ...) .

This is a commutative multiplicative algebra and so is the Schwartz space S(ia∗).
The spherical transform is a (bijective) algebra isomorphism

H : Cc(G//K)→ PW(a∗C)W

which extends to a (bijective) algebra isomorphism

H : C(G//K)→ S(ia∗)W .

The inverse is given by

f(g) =
1

|W|

∫
ia∗
Hf(λ)φ−λ(g)|c(λ)|−2 dλ ,

where c is the Harish-Chandra c-function and dλ is a Lebesgue measure on the vector
space ia∗, see [GV88, Proposition 3.1.4, Proposition 3.3.2 and Theorem 6.4.1]. Recall
also that φ−λ is positive definite for λ ∈ ia∗. Hence f 6= 0 is positive definite if Hf is
non-negative on ia∗.

Furthermore,

H(f ∗)(λ) = Hf(−λ) = Hf(λ)
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for the λ in the domain of Hf . This is because φ∗λ(g) = φ−λ(g) and −λ = w0λ, where w0

is the reflection with respect to the longest root.
Recall Harish-Chandra homomorphism, [GV88, Theorem 2.6.7],

γ : U(g)K → U(a)W = C[a∗C]W .

Then for q ∈ U(g)K, acting as a differential operator via the right regular representation,

H(qf)(λ) = γ(q)(λ)Hf(λ) ,

see [GV88, Proposition 3.2.1] and [Hel84, Theorem 5.18, page 306].

Proposition 79. Let q ∈ U(g)K be such that γ(q)(ρ) < 0 and γ(q)(λ) ≥ 0 for all λ ∈ ia∗
and γ(q)(λ) > 0 for some λ ∈ ia∗. Then for any f ∈ Cc(G//K) with a non-zero integral
over G, the function q(f ∗ f ∗) ∈ C∞c (G//K) is positive definite and∫

G

q(f ∗ f ∗)(g) dg < 0 .

Proof. Since q(f ∗ f ∗) = (qf) ∗ f ∗, this function is in C∞c (G//K). Furthermore,∫
G

q(f ∗ f ∗)(g) dg = H(q(f ∗ f ∗))(ρ) = γ(q)(ρ)H(f ∗ f ∗)(ρ)

= γ(q)(ρ)H(f)(ρ)H(f ∗)(ρ)

= γ(q)(ρ)|H(f)(ρ)|2

= γ(q)(ρ)

∣∣∣∣∫
G

f(g) dg

∣∣∣∣2 < 0 .

Since,

H(q(f ∗ f ∗))(λ) = γ(q)(λ)|Hf(λ)|2 ,

the inversion formula for the spherical transform implies that the function q(f ∗ f ∗) is
positive definite. �

Let B be a G-invariant non-degenerate symmetric bilinear form on the real vector space
g, [GV88, page 94], and let CB ∈ U(g)G and CB,a ∈ U(a)W be the corresponding Casimir
elements. Then

γ(CB) = CB,a −B(ρ, ρ) ,

where we dualize B from a to a∗, see [GV88, Lemma 2.6.10]. Assuming B is positive
definite on a∗, we see that the polynomial CB,a has negative values on ia∗ \ {0} and is
positive on ρ. Hence,

q = −CB −B(ρ, ρ)

satisfies the conditions of Proposition 79.
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